
Horizon 2020

Innovative and affordable service for PC monitoring of individual Cultural
Artifacts during display, storage, handling and transport

CollectionCare database storage I
Ready for data accommodation; Historic ambient

data of artworks uploaded

Deliverable number: D3.2

Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 814624.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

2

D3.2. CollectionCare database storage I

Project Acronym: CollectionCare

Project Full Title: Innovative and affordable service for PC monitoring of individual Cultural Artifacts
during display, storage, handling and transport

Call: H2020-NMBP-ST-IND-2018-2020

Topic: NMBP-33-2018

Type of Action: IA

Grant Number: 814624

Project URL: www.collectioncare.eu

Deliverable nature: Other

Dissemination level: Public (PU)

WP n0: WP3

WP title: Big data cloud computing environment for preventive conservation
management

Contractual Delivery Date: December 2019

Delivery Date: 27th December 2019

Number of pages: 27

Keywords: Database Storage, Storage Architecture, Storage Requirements, Amazon
Web Services, DynamoDB, REST API, Amazon Lambda, Apache NiFi, Security

Authors: Sergio Salmerón, ATOS
Jorge Montero, ATOS
Tomás Pariente, ATOS

Reviewers: Ángel Perles, UPV
Jaime Laborda, UPV
Ana María García Castillo, UPV

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

3

D3.2. CollectionCare database storage I

Abstract

This deliverable reports on the implementation of CollectionCare database storage to be used by the whole
project. The document explores different storage architectures based on the requirements specified in
CollectionCare WP1 and under the umbrella of the overall cloud architecture defined in WP3.

It also describes the table schema chosen for storing the data and the communication mechanisms to
interact with the database by providing a set of services.

Finally, a list of security measures is presented and initially implemented.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

4

D3.2. CollectionCare database storage I

Abbreviations and Acronyms Glossary

API Application Programming Interface

ATOS Atos Spain SA

AWS Amazon Web Services

CSV Comma-Separated Values

D Deliverable

DB Database

GUI Graphical User Interface

ID Identity

JSON JavaScript Object Notation

OAS OpenAPI Specification

RDBMS Relational Database Management System

REST Representational State Transfer

SDK Software Development Kit

WP Work Package

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

5

D3.2. CollectionCare database storage I

List of figures

Figure 1. Graphical description of the API connections between the components and the database 12

Figure 2. Swagger specification for CollectionCare Storage REST API 18

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

6

D3.2. CollectionCare database storage I

List of tables

Table 1. Technical requirements included in D1.9 [1] with the implementation approach followed to address them 9

Table 2. Composite primary key of sensor measurements table 13

Table 3. Attributes for sensor measurements table 13

Table 4. Sensor measurements table with example data 14

Table 5. Composite primary key of artwork table 15

Table 6. Attributes for artwork table 15

Table 7. Artwork table with example data 16

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

7

D3.2. CollectionCare database storage I

Contents

Abstract ... 3

Abbreviations and Acronyms Glossary .. 4

List of figures .. 5

List of tables ... 6

Contents .. 7

1. Introduction .. 8

2. Summary and Review of STORAGE requirements ... 9

2.1. Storage requirements .. 9

3. Overall CollectionCare STORAGE Architecture ... 11

3.1. Evaluated approaches ... 11

3.2. Proposed storage solution ... 11

4. Table schemas ... 13

4.1. Physical sensors source .. 13

4.2. Historical data source .. 14

4.3. Artworks details ... 15

4.4. Degradation models source ... 16

4.5. Other sources .. 17

5. CollectionCare Storage Communication Services ... 18

5.1. Connectors ... 22

5.1.1. Amazon Lambda .. 22

5.1.2. Apache NiFi ... 22

6. Security measures and implementation .. 24

7. Conclusions and next steps .. 25

Bibliography .. 26

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

8

D3.2. CollectionCare database storage I

1. Introduction

Data storage is fundamental when working with data. In CollectionCare, the use and management of data is
essential, as it is the core of the project. Artworks are monitored by sensors and the estimation of potential
damage and degradation is performed based on the data collected. Due to the complex infrastructure to
be developed in the project (sensors sending data, models consuming that data, users viewing data
through GUIs, etc.), it is important to carry out a wise design of the data storage layer, as it plays a central
role in the technical infrastructure of the project. All the technical components developed interact with the
data storage solution, which makes it a component that, if not properly set up, could lead to a bottleneck
situation or even shut down the operation of the entire technical infrastructure of the project.

To avoid potential errors, it is very important to evaluate different possible approaches in order to design a
storage solution that fits all the project requirements. To do so, different services have been estimated and
an initial version of the storage solution to be deployed in the project has been developed. An initial
proposal of the infrastructure to be set up as well as the schema to use to store the data currently
identified in the project has been generated. In addition, some currently discarded services initially
evaluated have been described and a justification of their exclusion is provided. Nevertheless, as the
project continues, the solution proposed in this document will both continue to grow with missing
functionalities identified at the current time and advance in the direction of the developments and changes
introduced, adapting its functioning to the new requisites that might appear.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

9

D3.2. CollectionCare database storage I

2. Summary and Review of STORAGE requirements

In deliverable D1.9 (Sánchez et al., 2019), a definition of technical requirements for CollectionCare was
submitted. In that document, a subsection was dedicated to the technical requirements to be taken into
account for the data storage solution to be adopted in the project, as well as a set of possible solutions to
be used in the project. In this section, those initial solutions and technical requirements are reviewed,
analysing how they have been addressed in the initial development of the data storage layer of the
CollectionCare project.

2.1. Storage requirements

In this section, we shall evaluate the initial technical requirements of the storage solution. The following
table was initially included in section 5 of D1.9 (Sánchez et al., 2019) and has been extended with the
implementation approach followed in the current state of the data storage solution in the project.

Table 1. Technical requirements included in D1.9 [1] with the implementation approach followed to address them.

ID TYPE NAME DESCRIPTION IMPLEMENTATION APPROACH

R1.1 Functional Sensor data storage

Provide a data storage solution
adapted to store the data
collected by the different
sensor nodes deployed in the
project. This solution should be
built upon the cloud
architecture implemented in
the project and provide space
enough (and scalability
options) to store the data
volume proposed in this
project.

The data storage solution has
been developed in order to
work with AWS as back-end.
This choice affords us enough
space on demand and allows
us to easily resolve any
possible scalability problems
due to the dynamic allocation
of resources provided by AWS.

R1.2 Functional
Sensor data upload

mechanisms

Provide the mechanisms
required for uploading data in
near-real time and
concurrently. This requirement
must be able to handle data
uploading from all the sensor
nodes with a frequency of up
to four samples per hour and
node.

An API has been developed to
allow the different sensing
nodes to send the collected
data in a transparent way,
storing all the data received in
the corresponding
measurements table.

R1.3 Functional
Historical data

storage

Provide a data storage solution
similar to the one provided for
the sensor node data but this
time able to handle different
uploaded historical records.
This solution must provide
enough space and scalability
options both to handle all the
historic data proposed in this
project and to grow with the
potential inclusion of new data.

Historical data will be
integrated in the sensors
database, to complement the
sensor collected data. In order
to use the historical data
together with the sensor data,
it should be uploaded with the
format set out in D1.2 (Rossi
Doria et al., 2019).

R1.4 Functional
Historical data

upload mechanisms

Provide the mechanisms that
allow the upload of historical
ambient condition data. This

Functionality to upload
historical data has been
developed. As in R1.2, an API

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

10

D3.2. CollectionCare database storage I

ID TYPE NAME DESCRIPTION IMPLEMENTATION APPROACH
functionality should allow data
uploading in .csv files.

method has been developed in
order to upload historical data.

R1.5 Functional
Data access

mechanisms for the
cloud components

Allow the different elements of
the cloud solution to access
the data storage when needed
and allowed.

As mentioned above, an API
providing access to all the
functionalities related to the
storage layer of the
CollectionCare solution has
been developed.

R1.6 Functional
State of the

artworks data
storage

Provide the mechanisms and
tools to allow the storage and
updating of different
information related to the
historic or current state of the
artworks being sensed.

A table containing artwork
information has been
designed, allowing the addition
of all the data that the
CollectionCare user considers
necessary.

R1.7 Functional
Data storage
permission

management

Include the use of permission
management tools to allow or
deny access to the data
depending on the design of the
data storage solution.

Different security
measurements have been
evaluated at this point. Due to
the integration of different
components in the storage
layer, there are security
measurements to be included
in the different components
involved. This is further
described in section 6.

R1.8 Functional
Data storage

backup system

Configure a backup system
that ensures the availability of
the data in case an error
occurs in the database. This
mechanism should avoid or
minimise any potential data
loss that might derive from a
human or technical failure.

A backup system is to be set up
to guarantee the availability of
data in case of unsolicited data
loss. This can be done by
automating the backup of the
database in a different server
or hiring the backup system
offered by AWS. Nevertheless,
the possibility of downloading
the data through an API service
is also being implemented.

R1.9 Functional
Data pre-

processing
mechanisms

Set up a series of pre-
processing operations to be
applied to the incoming data
from the different partners in
order to adapt the data format
to the storage in the cloud
solution developed in the
project.

A system able to handle
different pre-processing
techniques (e.g. unit
conversion, timestamp
adaptation, formatting, etc.) is
evaluated. This point is
currently discussed in the
section 5.1 of this document.

R3.1 Technical
APIs expected

traffic

Be able to serve public and
private REST APIs which expect
about 30-60 requests per
minute.

An API connected to the AWS
storage solution has been
developed to allow the
execution of all the interactions
expected to take place with the
data storage of the project.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

11

D3.2. CollectionCare database storage I

3. Overall CollectionCare STORAGE Architecture

A wide range of infrastructural items could be used for implementation of the storage solution in
CollectionCare. Amazon Web Services (AWS) has been chosen as the main service provider, thanks to the
many possibilities it offers regarding cloud infrastructure, matching all the requirements introduced in D1.9
(Sánchez et al., 2019). Nevertheless, due to the amount of services offered, different approaches could have
been followed depending on the services chosen to that end.

3.1. Evaluated approaches

As AWS is the most popular cloud service provider, the focus was set on their services when evaluating
different services to deploy the CollectionCare data storage solution. Initially (as mentioned in section 2.1 of
D1.9 (Sánchez et al., 2019)), AWS S3 and AWS RDS were listed as possible solutions to be included in the
project, but AWS DynamoDB has been chosen as the main service to implement the storage solution in the
project. With the technical requirements defined, we studied the adoption of each of the initial storage
methods proposed in the cloud service options:

• Amazon Simple Storage Service (S3) (Amazon, 2019f) is the most popular object storage service
provided by AWS. It does provide a good service for storing files, but due to the nature of the data
to be used in the project and the way it will be accessed, this solution might not be the most
suitable to match the needs of the project. This service is a good solution for storing unstructured
data, but due to the way the data may be accessed in the project, perhaps a database solution may
perform better (as the data is expected to be accessed in a similar way every time the models are
executed).

• Amazon Relational Database Service RDS (Amazon, 2019e) was also a candidate to be used in the
project, as it is the most widely used relational database management system (RDBMS) service in
the AWS environment. It allows users to store data and provides performance with a very low
latency, which might be useful for the project. Nevertheless, the structure of the data to be stored
needs to be designed beforehand, and that might affect the future of the project, where different
versions of the sensing stations are expected to be evaluated (adding new parameters to the
databases). Additionally, each museum might want to add different elements to the database, even
depending on the artwork to be described. This need to predefine the structure of the databases
and the difficulties of updating this database schema when needed were the basis for ruling out
this option in favour of a more flexible approach to the database.

3.2. Proposed storage solution

After a careful assessment of the proposed services, Amazon DynamoDB (Amazon, 2019a) was chosen as
the most suitable solution for use in CollectionCare. Amazon DynamoDB is the main big data solution
provided by Amazon Web Services. It provides the functionality of a NoSQL database without having to
purchase or maintain any server. It allows data storage offering a series of advantages for the project that
defined the decision for this service.

DynamoDB follows a Key-Value approach, which allows us to store many different types of data once a set
of keys have been defined. In our case, some keys such as artwork can have any kind of data attached,
which allows us to have a database of artworks each with a different data schema, which might vary

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

12

D3.2. CollectionCare database storage I

according to the peculiarities of the artwork (e.g. the different materials of the artwork, different
restorations of the artwork, particular information for that artwork, etc.).

DynamoDB offers very low latency, which allows the different components of the system to consume the
project data with almost no temporal impact. This will be useful when the models need to get all the
measurements attached to an artwork or when the GUI might ask for some measurement or artwork
information to be presented to the user.

As it is an AWS service, almost no maintenance of the database is required, with a set of configurations at
the beginning of the project defining how it is expected the DB will be maintained, and AWS will automate
many maintenance tasks.

At this stage of the project, other tools have been introduced for the development of certain mechanisms
related to the data storage. The connectors required for interacting with the database are being
implemented as an API using Swagger to provide the required services for interacting with the data storage
solution of the project. In this sense, we can define the operations that will be allowed in the data storage
layer, reducing risks and making security and control of the data accesses in the project easier. Figure 1
depicts the approach followed in the project (with a detailed description of the API in the centre of the
image in section 5 and a detailed description of the tables in the right side of the image in section 4).

Figure 1. Graphical description of the API connections between the components and the database

Storage API Components

Sensor measurements
table

Artwork information table

GUI

Models

Sensors

Service 1

Service 2

Service 3

Service 4

…

Service n

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

13

D3.2. CollectionCare database storage I

4. Table schemas

Based on the storage requirements described in Section 2.1, it is necessary to store different kind of data
from different sources.

4.1. Physical sensors source

The main source consists of all the sensors installed in the museums that will send measurements in real
time. The specific requirements are set out in D1.4 (Perles, Peiró Vitoria & Chazal, 2019) and the
measurements to be captured are mainly temperature (T), relative humidity (RH), light (L) and air pollutants
(AP). There is a possibility that the battery status and other parameters could be provided along with the
rest of measures.

To cover all these requirements, a table will be created in the database with the specific characteristics
described below.

DynamoDB lets us define a composite primary key to uniquely identify each measurement, with a partition
key and a sort key. In our case, the partition case will be assigned to the “sensor_id” that identifies the
physical device, and the sort key will be the “timestamp” when the device has sent the measurements. The
sorting key is very useful to query the data efficiently, for example to get some data in a time range. Table 2
describes this composite primary key of the sensor measurements table.

Table 2. Composite primary key of sensor measurements table

FIELD TYPE DESCRIPTION

sensor_id (partition key) uint32_t Device identification number for the physical node

timestamp (sorting key) String/Date
Timestamp of received measurement

(UTC time, according to ISO_8601)

On the other hand, the table will store all the measurements provided by the sensors as attributes.
DynamoDB has the property of storing only one, two, all or any combination. It is useful for us because not
all the sensors capture all the attributes, as it is common practice to set sensors to gather specific
attributes so as not to overload them and ensure better performance and longer battery life. Later on, the
data gathered could be merged in the database. Table 3 has a description of those various attributes,
where there are attributes that have to be defined but with no impact on the table schema defined.

Table 3. Attributes for sensor measurements table

FIELD TYPE DESCRIPTION

temperature Float
Temperature in Celsius degree

(0.01 resolution)

relative_humidity Float Percentage (0.1 resolution)

ambient_light Float Ambient light in lux (1lux

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

14

D3.2. CollectionCare database storage I

FIELD TYPE DESCRIPTION

resolution)

pollutants To be defined To be defined

battery_status To be defined To be defined

battery_temperature To be defined To be defined

… … …

Table 4 provides an example of the data that could be stored, with one sensor taking temperature and
relative humidity measurements and the other gathering the ambient light data:

Table 4. Sensor measurements table with example data

PRIMARY KEY ATTRIBUTES

sensor_id timestamp temperature relative_humidity ambient_light …

S0001 20190101T000000 24.50 45.4 …

S0001 20190101T100000 24.63 46.0 …

S0002 20190101T110000 25 …

S0001 20190101T220000 25.05 41.2 …

S0002 20190101T230000 20 …

… … … … … …

In Section 4.3 the relation between the sensors and the artworks will be explained.

4.2. Historical data source
The second source, important to the models, is related to the historical data that the museums will upload,
which contains environmental data on the selected artwork for a range of time in the past. This information
is compiled and unified in CSV files, following the standards defined in D1.2 (Rossi Doria et al., 2019).

All this information will be stored in the table created in Section 4.1 with a new sensor_id created for the
historical data and linked to the artwork.

Those CSV files will be stored in the CollectionCare database with the help of the REST API services provided
with the database that will permit the communication with it. More details are provided in section 5.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

15

D3.2. CollectionCare database storage I

4.3. Artworks details
To store the information related to the artworks, another table is needed, not only for the artwork details,
but also for the sensors attached over time. The composite primary key is described in Table 5:

Table 5. Composite primary key of artwork table

FIELD TYPE DESCRIPTION

artwork_id (partition key) String Artwork identification string

varies (sorting key) String

It can be “details” to describe the details of the
artwork, or the version control to know which

sensor is measuring (“v_0” for actual sensor, or
“v_timestamp” for historical sensor)

DynamoDB lets us define a sort key that allows us to store this kind of information and even a version
control to know which sensor is measuring that artwork at this time, with a historical representation of the
different sensors that have measured what and when. This historical information is very useful to get the
measurement data from the sensor measurement table by querying a specific sensor_id in a range of
dates. In sensor_attached the information will be a “v0” field to provide fast access to the current sensor
measuring without querying more information not required.

As described for the sensor measurement table, the artwork table will include a variety of attributes that
may appear or not, thanks to the flexibility of DynamoDB, as described in Table 6:

Table 6. Attributes for artwork table

FIELD TYPE DESCRIPTION

museum_id (details) String
Museum identification string to identify

which museum has the artwork

room_id (details) String
Room identification string to identify in

which room the artwork is located

… (details) …
Other attributes needed to be stored
related to the details of the artwork

sensor_id (v_X) uint32_t
Device identification number for the

physical node

start_date (v_X) String/Date
Date when the sensor has been attached

to the artwork

end_date (v_X) String/Date
Date when the sensor has been removed

from the artwork

… (v_X) …
Other attributes needed to be stored
related to the sensors attached to the

artwork

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

16

D3.2. CollectionCare database storage I

To clarify this table schema and provide a better understanding by describing an example, Table 7 presents
an example of different artworks that could be stored in the CollectionCare database and could be queried
by the services described in Section 5.

Table 7. Artwork table with example data

PRIMARY KEY ATTRIBUTES

artwork_id varies Attribute 1 Attribute 2 Attribute 3 …

A0001

details
museum_id:

M0001

room_id:

R0001
 …

v_0
sensor_id:

S0003

start_date:

20090501T000000
 …

v_1
sensor_id:

S0001

start_date:

20090101T000000

end_date:

20090301T000000
…

v_2
sensor_id:

S0002

start_date:

20090301T000000

end_date:

20090501T000000
…

v_3
sensor_id:

S0003

start_date:

20090501T000000
 …

A0002

details
Museum_id:

M0002

Room_id:

R0088
 …

v_0
sensor_id:

S0077

start_date:

20091001T000000
 …

v_1
sensor_id:

S0078

start_date:

20090901T000000

end_date:

20091001T000000
…

v_2
sensor_id:

S0077

start_date:

20091001T000000
 …

… … … … … …

4.4. Degradation models source
The last source to take into consideration is the one related to the degradation models. It will probably be
necessary to have another table to store the results of the different models to be executed in
CollectionCare, to be able to show them later. All this information is being delivered under D2.1 (Bosco et
al., 2019) and is being taken into account for the next deliverable of the CollectionCare database storage II
D3.6.

It is not a critical path for this database, as DynamoDB let us create this new table, or even easily add this

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

17

D3.2. CollectionCare database storage I

information in the same way as the sensor attached to the artwork table described in Section 4.3. This will
involve developing the services for storing and gathering this information in the REST API developed in
Section 5 with few modifications and in a short period of time.

4.5. Other sources
As described in this section, it is easy to update the table schema or even add new tables to the database.
Because of this, new requirements that could appear during the project will be taken into consideration
and could easily be added to the CollectionCare database.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

18

D3.2. CollectionCare database storage I

5. CollectionCare Storage Communication Services

To provide a way of facilitating communication between CollectionCare and the database, a REST API will be
developed jointly with the database. This implementation will be based on Swagger (SmartBear, 2019b),
which is one of the best frameworks for the OpenAPI Specification (OAS). Swagger covers the whole API
lifecycle, starting at the design phase and continuing with the development, but also covering
documentation and test phases. The main point is that Swagger presents a REST service that can be
available to others in a secure way.

For CollectionCare, this Swagger framework has been implemented in Java because it can be easily
integrated in the cloud environment and Amazon Web Services provides a Java API by an SDK (Amazon,
2019g) that works with DynamoDB.

Figure 2 shows a summary of the services implemented. In the rest of this section, all those services are
described and the input and output parameters explained, as well as what they do and where they work
inside the database, and the permissions they could have (if they are private or public access).

Figure 2. Swagger specification for CollectionCare Storage REST API

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

19

D3.2. CollectionCare database storage I

At this point of the project the following services are presented, but the list could be extended with more
services based on the requirements and needs that might appear in subsequent phases of CollectionCare.

- Create initial tables (Private): this service is used to initially create the tables described in Section 4
to be used in CollectionCare for a new DynamoDB instance.

- Backup (Private): there is the possibility of generating a database backup at a specific time instead
of waiting for the periodical backup set by default.

- Restore (Private): restore a backup from a list of available backups.

- Search (Public/Protected):

o Search measurements: get the data related to a sensor device.
 Steps:

• Get measurements of the sensor in that range of dates (Sensor Table). Call
“Search measurements” service.

 Input:
• SensorID: the ID of the sensor device.
• Temporal range: The time window of the requested data.
• (Optional) Variables requested: the variables to be retrieved from the

resultant registries. If no variables are defined, all the variables for each
registry are returned.

 Output:
• An array of elements containing the variables requested for a given sensor

in a given time window.

o Search artwork: get the information of a specific artwork.
 Steps:

• Get the information of the artwork specified (Artwork Table).
 Input:

• ArtworkID: the ID of the artwork sensed.
 Output:

• An array of elements containing the information for a given artwork.

o Search for models: mainly to feed the models with the data from an artwork in a range of
dates.

 Steps:
• Step 1: Find the sensors attached to the artwork in that range of dates

(Artwork Table).
• Step 2: Get measurements of those sensors in that range of dates (Sensor

Table). Call “Search measurements” service.
 Input:

• ArtworkID: the ID of the artwork sensed.
• Temporal range: The time window of the requested data.
• (Optional) Variables requested: the variables to be retrieved from the

resultant registries. If no variables are defined, all the variables for each
registry are returned.

 Output:

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

20

D3.2. CollectionCare database storage I

• An array of elements containing the variables requested for a given artwork
in a given time window.

- Storage (Public/Protected): to store the measurements and artworks.
o Artworks: store in Artwork Table the details of the artwork.

 Input:
• ArtworkID: the ID of the artwork to be updated
• Data: An array of elements:

o Variable: the name of the variable to be stored
o Value: the value to be stored for the variable

 Output:
• A confirmation of the addition of the data sent.

o Sensor data: store in Sensor Table the sensor measurement. This service will be usually be

called automatically by the sensor nodes
 Input:

• SensorID: The ID of the sensor sending the data
• Timestamp: The time stamp of the data collected
• Data: An array of elements:

o Variable: the name of the variable to be stored
o Value: the value to be stored for the variable

 Output:
• A confirmation of the addition of the data sent.

o Historical data (adaptors): store in Sensor Table the measurements of the historical data

from the selected artworks provided by the museums. Sensor_id will be set as default or
empty.

 Input:
• (Optional) SensorID: The ID of the sensor to assign the data. If not

specified, a fictional default value will be given.
• Timestamp: The time stamp of the data collected.
• Data: An array of elements:

o Variable: the name of the variable to be stored
o Value: the value to be stored for the variable

 Output:
• A confirmation of the addition of the data sent.

- Update (Public/Protected):

o Update_sensor_data: Update the measurement of a sensor in a period, i.e. adjust
temperature (Sensor Table).

 Input:
• SensorID: The ID of the sensor sending the data
• Timestamp: The time stamp of the data collected
• Data: An array of elements:

o Variable: the name of the variable to be updated
o Value: the value to be updated for the variable

 Output:
• A confirmation of the addition of the data sent.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

21

D3.2. CollectionCare database storage I

o Update_artwork: Update artwork details (Artwork Table)

 Input:
• ArtworkID: The ID of the artwork to be modified
• Data: An array of elements:

o Variable: the name of the variable to be updated
o Value: the value to be updated for the variable

 Output:
• A confirmation of the addition of the data sent.

o Update sensors attached: Update if a sensor has change of artwork target or has been

removed or added (Artwork Table).
 Input:

• SensorID: The ID of the sensor to be updated.
• (Optional)PreviousArtworkID: The ID of the artwork that was sensed by that

node.
• (Optional)NextArtworkID: The ID of the artwork that will be sensed by that

node from now on.
• Timestamp: The time stamp of the sensor node change.

 Output:
• A confirmation of the addition of the sensor node update.

 Note: One of the optional fields (i.e. PreviousArtworkID or NextArtworkID) has to be
present

- Delete (Public/Protected):

o Delete measurements: delete some specific measurements from a sensor. If some sensor
analysed incorrect data in a specific range of dates and those measurements must be
removed from Sensor Table.

 Input:
• SensorID: the ID of the sensor that recorded the data to be deleted.
• Temporal range: The time window of the data to be deleted.
• (Optional) Variables to be deleted: the variables to be deleted from the

resultant registries. If no variables are defined, all the variables for each
registry are deleted.

 Output:
• A confirmation of the deletion of the requested registries.

o Delete artwork: All the information about one artwork (Artwork Table)

 Input:
• ArtworkID: the ID of the artwork whose data has to be deleted.
• (Optional) Variables to be deleted: the variables to be deleted. If no

variables are defined, all the variables are deleted.
 Output:

• A confirmation of the deletion of the requested registries.
 Note: It can be followed by deleting the measurements of that artwork if needed

(Sensor Table).

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

22

D3.2. CollectionCare database storage I

- Download CSV (Public/Protected): For a specific sensor, download their measurements in a range
(Sensor Table).

o Input:
 SensorID: the ID of the sensor that recorded the data to be downloaded.
 Temporal range: The time window of the data to be downloaded.
 (Optional) Variables to be downloaded: the variables to be downloaded from the

resulting registries. If no variables are defined, all the variables for each registry are
downloaded.

o Output:
 A CSV file containing the measurements of the sensor.

5.1. Connectors
Regarding the task of storing the historical data, we tested other solutions that were discarded because
with the approach followed using Swagger it is better to use Java libraries. In our case, we used Apache
Commons CSV (Apache, 2019a) for reading the CSV files provided by the museums and to download the
CSV file with a group of data required in the service described above.

The two alternatives tested are based on Amazon Lambda and Apache NiFi.

5.1.1. Amazon Lambda

Amazon Lambda (Amazon, 2019c) is a service provided by Amazon Web Services that allows the running of
scripts following a serverless approach. It works by executing the scripts triggered by actions defined by the
user. It has great potential, as it supports Node.js, Python, Java, Go, Ruby and C#, which makes the
execution of almost any code possible. Nevertheless, it has some limitations, such as the resources to be
provided for execution, as well as a time limit on the execution of each process (currently set to a max of 15
minutes).

As Amazon Lambda is a service of the AWS environment, it does not require any server or maintenance,
but, in contrast, its use requires payment for every execution request, as well as for the duration of the
execution (with a price adapted to the resources devoted to that function) (Amazon, 2019d).

Some tests have been carried out in the project with AWS Lambda (automating the uploading of any csv file
in AWS S3 with historical data to the DynamoDB database), but at this stage of the project it has not been
included in the current solution. Nevertheless, due to its inclusion in the AWS environment, the
interconnection between AWS Lambda and AWS DynamoDB is quite accessible.

5.1.2. Apache NiFi

Apache NiFi (Apache, 2018) is a well-known framework for processing and distributing data. It allows us to
create specific processors to transform the data coming from the historical CSV files to the table schema
created for CollectionCare. Through this web-based user interface it is possible to easily create a flow with
highly configurable properties, in our case to be able to join the CSV management and connect it to
DynamoDB. Testing and development phases are very fast, with continuous monitoring of the dataflow
throughout the process.

This Apache NiFi flow should be executed in the environment described in D3.1 (Juan, 2020) by having a call
that launches the process in the REST API. As mentioned before, this solution has been ruled out because it

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

23

D3.2. CollectionCare database storage I

involves another piece to match in the cloud infrastructure and another added management task to control
whether it is executed correctly and efficiently.

Just in case this solution could be adopted in the future or in another situation, Apache NiFi provides
different components to communicate with DynamoDB. The main one for this connector is “PutDynamoDB”
(Apache, 2019b), allowing the user to connect to a table created in DynamoDB and store the required data.
The data to be stored must be in JSON format. In (Apache, 2019c), not only the components related to
DynamoDB are described, but also all the processors for working with AWS.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

24

D3.2. CollectionCare database storage I

6. Security measures and implementation

An important issue when working with databases is security, to avoid problems with fraudulent actions,
forbidden accesses or other events that could result in inconsistent data or erase important records for the
project, and denial of services.

It is not only about the data or the usage, but also the monetisation when you are working under the AWS
umbrella. It is important to be very careful and keep everything under control to spend only the costs
required. However, AWS provides security mechanisms for all their applications, and in this case for
DynamoDB (Amazon, 2019b).

As we have another component, the REST API, added security measures are required. For this deliverable,
all those security actions discovered are described, and they will be implemented for the next deliverable
D3.6, with more actions that may be needed to ensure the successful results of CollectionCare.

The first action is related to who can access to the REST API services, as an authentication and authorisation
process is required (SmartBear, 2019a). To get to this point, Swagger follows the security scheme used in
OpenAPI, by defining a set of headers, or by using cookies, to read the API keys and check if they are
allowed to access the services. In the case of controlling different actions requested by the users, as reads
or writes, an OAuth 2.0 protocol could be added. With this authorisation it is possible to set specific rights
to determined services based on the role of the user leveraging the API.

All these security measures will let us control, or at least minimise, attacks by hackers or users with
fraudulent objectives.

The second action should cover the ownership of the data, for letting the CollectionCare users have access
to the data that they own or to which they have permission. This is the scenario where a museum cannot
access the information of another museum. This action is intended to be mitigated by having roles in the
project, to describe who is asking for information and which data is assigned to them. Specifically, a solution
consists of adding a process at the output of the services to filter the data and only return the one that fits.

More actions or a refinement of the same will be taken into consideration to cover all the needs of each
museum and CollectionCare itself.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

25

D3.2. CollectionCare database storage I

7. Conclusions and next steps

In this document, a description of the initial version of the storage solution has been provided. As we have
seen, the different approaches proposed at the beginning of the project have been evaluated, taking into
account the technical requirements identified in D1.9 of the project. An initial version of the storage
solution has been developed and is being tested, in order to cover all the required functionalities of the
project. The initial approach proposed seems to adapt to the initial requirements identified and has been
designed with some characteristics such as flexibility in mind to ease future adaptations to possible
changes that could occur in the different components that interact with the storage layer in the project.

Nevertheless, although this version of the storage solution is ready for data accommodation, the
development of the storage solution is still live, as the results of the tests carried out and the identification
of potential new issues have to be taken into account in future releases of the storage solution (D3.6), with
a more advanced and integrated development and the historical data uploaded.

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

26

D3.2. CollectionCare database storage I

Bibliography

Amazon. (2019a). Amazon DynamoDB. Retrieved from https://aws.amazon.com/dynamodb/ in December

13th 2019.

Amazon. (2019b). Security in Amazon DynamoDB. Retrieved from
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/security.html in December
05th 2019.

Amazon. (2019c). Amazon Lambda. Retrieved from https://aws.amazon.com/lambda/ in December 13th

2019.

Amazon. (2019d). Amazon Lambda Pricing. Retrieved from https://aws.amazon.com/lambda/pricing/ in
December 13th 2019.

Amazon. (2019e). Amazon Relational Database Service. Retrieved from https://aws.amazon.com/rds/ in
December 13th 2019.

Amazon. (2019f). Amazon Simple Storage Service (S3). Retrieved from https://aws.amazon.com/s3/ in

December 13th 2019.

Amazon. (2019g). AWS SDK for Java 2.0 Developer Guide. Retrieved from https://docs.aws.amazon.com/sdk-
for-java/v2/developer-guide/welcome.html in December 05th 2019.

Apache. (2018). Apache NiFi. Retrieved from https://nifi.apache.org/ in December 05th 2019.

Apache. (2019a). Apache Commons CSV. Retrieved form https://commons.apache.org/proper/commons-

csv/ in December 05th 2019.

Apache. (2019b). Apache NiFi – PutDynamoDB processor. Retrieved from https://nifi.apache.org/docs/nifi-
docs/components/org.apache.nifi/nifi-aws-
nar/1.10.0/org.apache.nifi.processors.aws.dynamodb.PutDynamoDB/ in December 05th 2019.

Apache. (2019c) Apache NiFi Overview. Retrieved from https://nifi.apache.org/docs/nifi-docs/ in December
05th 2019.

Bosco, E., Parsa Sadr, A., Krarup Anderson, C., Fuster López, L., Bratasz, L., Andersons, B., Siani, A., Frasca, F.,
Sang-Hoon Lee, D., Kim, N., Kępa, L., Wagner, B., Gąsiorowska, I., Zschech, E., Kozłowki, R. &
Kutorasiński, K. (2019). Progress report I. Monitoring the progress in the tailoring of the degradation

models for canvas paintings, wooden objects, paper art-objects and metal art objects. CollectionCare
Project, Deliverable D2.1.

Juan, A (2020). Design and implementation of CollectionCare cloud computing architecture. CollectionCare
Project, Deliverable D3.1.

Perles, A., Peiró Vitoria, A & Chazal, S. (2019). Definition of technical requirements for wireless communication.

CollectionCare Project, Deliverable D1.4.

Rossi Doria, M., Gittins, M., Mercuri, G., Perles, A & Peiró Vitoria, A. (2019). Compiled and unified historic

environmental data of selected artworks of partner museums in .CSV file. CollectionCare Project,

Deliverable D1.2.

https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/security.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/rds/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/welcome.html
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/welcome.html
https://nifi.apache.org/
https://commons.apache.org/proper/commons-csv/
https://commons.apache.org/proper/commons-csv/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-aws-nar/1.10.0/org.apache.nifi.processors.aws.dynamodb.PutDynamoDB/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-aws-nar/1.10.0/org.apache.nifi.processors.aws.dynamodb.PutDynamoDB/
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-aws-nar/1.10.0/org.apache.nifi.processors.aws.dynamodb.PutDynamoDB/
https://nifi.apache.org/docs/nifi-docs/

 Innovative and affordable service for PC monitoring of individual Cultural Artifacts during display, storage, handling and transport

27

D3.2. CollectionCare database storage I

Sánchez. Á., Salmerón, S., Montero, J., Pariente, T. & Juan. A. (2019). Definition of technical requirements for

cloud computing. CollectionCare Project, Deliverable D1.9.

SmartBear. (2019a). Swagger - Authentication and Authorization. Retrieved from

https://swagger.io/docs/specification/authentication/ in December 05th 2019.

SmartBear. (2019b). Swagger Open Source. Retrieved from https://swagger.io/ in December 05th 2019.

https://swagger.io/docs/specification/authentication/
https://swagger.io/

	Abstract
	Abbreviations and Acronyms Glossary
	List of figures
	List of tables
	Contents
	1. Introduction
	2. Summary and Review of STORAGE requirements
	2.1. Storage requirements

	3. Overall CollectionCare STORAGE Architecture
	3.1. Evaluated approaches
	3.2. Proposed storage solution

	4. Table schemas
	4.1. Physical sensors source
	4.2. Historical data source
	4.3. Artworks details
	4.4. Degradation models source
	4.5. Other sources

	5. CollectionCare Storage Communication Services
	5.1. Connectors
	5.1.1. Amazon Lambda
	5.1.2. Apache NiFi

	6. Security measures and implementation
	7. Conclusions and next steps
	Bibliography

